$52 = 2^2 \times 13$
$52$ is the $5^{th}$ Bell Number.
The $n^{th}$ Bell Number is the number of ways you can split up a set containing n elements. The first non-trivial example is when $n = 3$. Assume that we have a set that contains three elements 1, 2 and 3, then the following five partitions are the only distinct divisions of that set:
{1, 2, 3}
{{1} {2, 3}}
{{2} {1, 3}}
{{3} {1, 2}}
{{1} {2} {3}}
$52$ is the $5^{th}$ Bell Number and the $52$ distinct partitions are:
- {1, 2, 3, 4, 5}
- {{1}, {2, 3, 4, 5}}
- {{1}, {2, 3, 4, 5}}
- {{3}, {1, 2, 4, 5}}
- {{4}, {1, 2, 3, 5}}
- {{5}, {1, 2, 3, 4}}
- {{1, 2} {3, 4, 5}}
- {{2, 3} {1, 4, 5}}
- {{3, 4} {1, 2, 5}}
- {{4, 5} {1, 2, 3}}
- {{5, 1} {2, 3, 4}}
- {{1, 3} {2, 4, 5}}
- {{2, 4} {1, 3, 5}}
- {{3, 5} {1, 2, 4}}
- {{4, 1} {2, 3, 5}}
- {{5, 2} {1, 3, 4}}
- {{1} {2} {3, 4, 5}}
- {{1} {3} {2, 4, 5}}
- {{1} {4} {2, 3, 5}}
- {{1} {5} {2, 3, 4}}
- {{2} {3} {1, 4, 5}}
- {{2} {4} {1, 3, 5}}
- {{2} {5} {1, 2, 4}}
- {{3} {4} {1, 2, 5}}
- {{3} {5} {1, 2, 4}}
- {{4} {5} {1, 2, 3}}
- {{1} {2, 3} {4, 5}}
- {{1} {2, 4} {3, 5}}
- {{1} {2, 5} {3, 4}}
- {{2} {1, 3} {4, 5}}
- {{2} {1, 4} {3, 5}}
- {{2} {1, 5} {3, 4}}
- {{3} {1, 2} {4, 5}}
- {{3} {1, 4} {2, 5}}
- {{3} {1, 5} {2, 4}}
- {{4} {1, 2} {3, 5}}
- {{4} {1, 3} {2, 5}}
- {{4} {1, 5} {2, 3}}
- {{5} {1, 2} {3, 4}}
- {{5} {1, 3} {2, 4}}
- {{5} {1, 4} {2, 3}}
- {{1} {2} {3} {4, 5}}
- {{1} {2} {4} {3, 5}}
- {{1} {2} {5} {3, 4}}
- {{1} {3} {4} {2, 5}}
- {{1} {3} {5} {2, 4}}
- {{1} {4} {5} {2, 3}}
- {{2} {3} {4} {1, 5}}
- {{2} {3} {5} {1, 4}}
- {{2} {4} {5} {1, 3}}
- {{3} {4} {5} {1, 2}}
- {{1} {2} {3} {4} {5}}
No comments:
Post a Comment