Friday, 22 February 2013

THURSDAY, 23 FEBRUARY 2013

Today is the $52^{nd}$ day of the year.

$52 = 2^2 \times 13$

$52$ is the $5^{th}$ Bell Number.

The $n^{th}$ Bell Number is the number of ways you can split up a set containing n elements. The first non-trivial example is when $n = 3$. Assume that we have a set that contains three elements 1, 2 and 3, then the following five partitions are the only distinct divisions of that set:
{1, 2, 3}
{{1} {2, 3}}
{{2} {1, 3}}
{{3} {1, 2}}
{{1} {2} {3}}

$52$ is the $5^{th}$ Bell Number and the $52$ distinct partitions are:
  1. {1, 2, 3, 4, 5}
  2. {{1}, {2, 3, 4, 5}}
  3. {{1}, {2, 3, 4, 5}}
  4. {{3}, {1, 2, 4, 5}}
  5. {{4}, {1, 2, 3, 5}}
  6. {{5}, {1, 2, 3, 4}}
  7. {{1, 2} {3, 4, 5}}
  8. {{2, 3} {1, 4, 5}}
  9. {{3, 4} {1, 2, 5}}
  10. {{4, 5} {1, 2, 3}}
  11. {{5, 1} {2, 3, 4}}
  12. {{1, 3} {2, 4, 5}}
  13. {{2, 4} {1, 3, 5}}
  14. {{3, 5} {1, 2, 4}}
  15. {{4, 1} {2, 3, 5}}
  16. {{5, 2} {1, 3, 4}}
  17. {{1} {2} {3, 4, 5}}
  18. {{1} {3} {2, 4, 5}}
  19. {{1} {4} {2, 3, 5}}
  20. {{1} {5} {2, 3, 4}}
  21. {{2} {3} {1, 4, 5}}
  22. {{2} {4} {1, 3, 5}}
  23. {{2} {5} {1, 2, 4}}
  24. {{3} {4} {1, 2, 5}}
  25. {{3} {5} {1, 2, 4}}
  26. {{4} {5} {1, 2, 3}}
  27. {{1} {2, 3} {4, 5}}
  28. {{1} {2, 4} {3, 5}}
  29. {{1} {2, 5} {3, 4}}
  30. {{2} {1, 3} {4, 5}}
  31. {{2} {1, 4} {3, 5}}
  32. {{2} {1, 5} {3, 4}}
  33. {{3} {1, 2} {4, 5}}
  34. {{3} {1, 4} {2, 5}}
  35. {{3} {1, 5} {2, 4}}
  36. {{4} {1, 2} {3, 5}}
  37. {{4} {1, 3} {2, 5}}
  38. {{4} {1, 5} {2, 3}}
  39. {{5} {1, 2} {3, 4}}
  40. {{5} {1, 3} {2, 4}}
  41. {{5} {1, 4} {2, 3}}
  42. {{1} {2} {3} {4, 5}}
  43. {{1} {2} {4} {3, 5}}
  44. {{1} {2} {5} {3, 4}}
  45. {{1} {3} {4} {2, 5}}
  46. {{1} {3} {5} {2, 4}}
  47. {{1} {4} {5} {2, 3}}
  48. {{2} {3} {4} {1, 5}}
  49. {{2} {3} {5} {1, 4}}
  50. {{2} {4} {5} {1, 3}}
  51. {{3} {4} {5} {1, 2}}
  52. {{1} {2} {3} {4} {5}}

No comments: