Monday, 25 February 2013

MONDAY, 25 FEBRUARY 2013

Today is the $56^{th}$ day of the year.

$56 = 2^3 \times 7$

$56$ is the number of times that $11$ can be partitioned. A partition of a number is the number of different ways that the number can be written as a sum of integers where the order is not significant. Thus $11$ has the following partitions:

  1. $11$
  2. $10 + 1$
  3. $9 + 2$
  4. $8 + 3$
  5. $7 + 4$
  6. $6 + 5$
  7. $9 + 1 + 1$
  8. $8 + 2 + 1$
  9. $7 + 3 + 1$
  10. $7 + 2 + 2$
  11. $6 + 4 + 1$
  12. $6 + 3 + 2$
  13. $5 + 5 + 1$
  14. $5 + 4 + 2$
  15. $5 + 3 + 3$
  16. $4 + 4 + 3$
  17. $8 + 1 + 1 + 1$
  18. $7 + 2 + 1 + 1$
  19. $6 + 3 + 1 + 1$
  20. $6 + 2 + 2 + 1$
  21. $5 + 4 + 1 + 1$
  22. $5 + 3 + 2 + 1$
  23. $5 + 2 + 2 + 2$
  24. $4 + 4 + 2 + 1$
  25. $4 + 3 + 3 + 1$
  26. $4 + 3 + 2 + 2$
  27. $3 + 3 + 3 + 2$
  28. $7 + 1 + 1 + 1 + 1$
  29. $6 + 2 + 1 + 1 + 1$
  30. $5 + 3 + 1 + 1 + 1$
  31. $5 + 2 + 2 + 1 + 1$
  32. $4 + 4 + 1 + 1 + 1$
  33. $4 + 3 + 2 + 1 + 1$
  34. $4 + 2 + 2 + 2 + 1$
  35. $3 + 3 + 3 + 1 + 1$
  36. $3 + 3 + 2 + 2 + 1$
  37. $3 + 2 + 2 + 2 + 2$
  38. $6 + 1 + 1 + 1 + 1 + 1$
  39. $5 + 2 + 1 + 1 + 1 + 1$
  40. $4 + 3 + 1 + 1 + 1 + 1$
  41. $4 + 2 + 2 + 1 + 1 + 1$
  42. $3 + 3 + 2 + 1 + 1 + 1$
  43. $3 + 2 + 2 + 2 + 1 + 1$
  44. $2 + 2 + 2 + 2 + 2 + 1$
  45. $5 + 1 + 1 + 1 + 1 + 1 + 1$
  46. $4 + 2 + 1 + 1 + 1 + 1 + 1$
  47. $3 + 3 + 1 + 1 + 1 + 1 + 1$
  48. $3 + 2 + 2 + 1 + 1 + 1 + 1$
  49. $2 + 2 + 2 + 2 + 1 + 1 + 1$
  50. $4 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
  51. $3 + 2 + 1 + 1 + 1 + 1 + 1 + 1$
  52. $2 + 2 + 2 + 1 + 1 + 1 + 1 + 1$
  53. $3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
  54. $2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
  55. $2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$
  56. $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$

No comments: